Paley-like graphs over finite fields from vector spaces
نویسندگان
چکیده
Motivated by the well-known Paley graphs over finite fields and their generalizations, in this paper we explore a natural multiplicative-additive analogue of such arising from vector spaces fields. Namely, if n≥2 U⊊Fqn is an Fq-vector space, GU (undirected) graph with vertex set V(GU)=Fqn edge E(GU)={(a,b)∈Fqn2|a≠b,ab∈U}. We describe structure arbitrary maximal clique provide bounds on number ω(GU) GU. In particular, compute largest possible value for q n. Moreover, obtain exact when any space dimension dU∈{1,2,n−1}.
منابع مشابه
Extension and averaging operators in vector spaces over finite fields
We study the mapping properties of both extension operators and averaging operators associated with the algebraic variety S = {x ∈ Fq : Q(x) = 0} where Q(x) is a nondegenerate quadratic form over the finite field Fq. Carbery, Stones, and Wright [3] established a method to deduce L − L estimates for averaging operators over a general variety. As a core result in this paper, we give the sharp est...
متن کاملCanonical Quantization of Symplectic Vector Spaces over Finite Fields
In this paper an affirmati5e answer is given to a question of D. Kazhdan on the existence of a canonical Hilbert spaces attached to symplectic vector spaces over finite fields. This result suggest a solution to a discrete analogue of a well known problem in geometric quantization where a naive canonical Hilbert space does not exist. As a result, a canonical model for the Weil representation of ...
متن کاملHarmonic Analysis on Vector Spaces over Finite Fields
• (i) G = ZN = Z/NZ = {0, 1, 2, ....., N − 1} with addition modulo N . For 0 ≤ n ≤ N − 1 let γn : G → S, γn(m) = exp(2πimn/N). Then {γ0, ....., γN−1} is a complete list of the characters so that ZN is isomorphic to ZN . An example of a primitive N ’th root of unity is ω := exp 2πi/N . • (ii) G = T = R/Z; for n ∈ Z let γn : G→ S, γn(x) = exp(2πinx). Then G∗ = {γn : n ∈ Z} so that G∗ is isomorphi...
متن کاملNotes on quantization of symplectic vector spaces over finite fields
In these notes we construct a quantization functor, associating an Hilbert space H(V ) to a finite dimensional symplectic vector space V over a finite field Fq. As a result, we obtain a canonical model for the Weil representation of the symplectic group Sp (V ). The main technical result is a proof of a stronger form of the Stone-von Neumann theorem for the Heisenberg group over Fq. Our result ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Finite Fields and Their Applications
سال: 2023
ISSN: ['1090-2465', '1071-5797']
DOI: https://doi.org/10.1016/j.ffa.2023.102171